Содержание
Как работает цифровая подпись
Если вспомнить формальное определение, то ЭЦП — это реквизит электронного документа. Другими словами, последовательность битов, вычисленная уникально для каждого конкретного сообщения. Подпись может быть вычислена как с применением секретного ключа, так и без него. Без секретного ключа подпись представляет собой просто код, который может доказать, что документ не был изменен. С использованием секретного ключа подпись докажет целостность сообщения, позволит убедиться в его подлинности и аутентифицировать источник.
Если ты читал вторую часть нашего цикла, то помнишь, что существуют симметричный и асимметричный подходы к шифрованию. С электронной подписью дела обстоят очень похоже — есть подписи с симметричным механизмом, а есть с асимметричным.
Симметричный механизм подписи малоприменим на практике — никому не хочется генерировать ключи для каждой подписи заново. А как ты помнишь, именно в одинаковых ключах кроется фишка симметричной криптографии.
- В лучших традициях асимметричной криптографии — имеем пару открытый и секретный ключ. Но не спеши пролистывать все это описание. Электронная подпись концептуально отличается от шифрования применением ключей, описанного ранее.
- От документа или сообщения подсчитывается хеш-функция, которая сократит сообщение любого объема до определенного количества байтов.
- Посредством криптографических преобразований вычисляется сама электронная подпись. В отличие от асимметричного шифрования, подпись основана на закрытом ключе, а вот проверить с помощью открытого ключа ее может любой его обладатель. Если помнишь, в шифровании все происходит наоборот: шифруют для нас на открытом ключе, а вот расшифровывать мы будем с помощью секретного ключа.
- Электронная подпись предоставляется вместе с исходным документом на проверку. По полученной композиции можно доказать, что документ с момента вычисления подписи не был изменен.
Схемы электронной подписи так же многообразны, как и способы шифрования. Чтобы схема подписи была стойкой, нужно, чтобы она основывалась на трудновычислимой математической задаче. Есть два типа таких задач: факторизация больших чисел и дискретное логарифмирование.
Факторизация больших чисел
Рассмотрим на практике электронную подпись на основе знаменитого алгоритма RSA. Шифрование RSA мы рассматривать не стали — это мейнстрим, и в той же «Википедии» есть его подробное описание.
1. Генерация ключей
Причина стойкости RSA кроется в сложности факторизации больших чисел. Другими словами, перебором очень трудно подобрать такие простые числа, которые в произведении дают модуль n. Ключи генерируются одинаково для подписи и для шифрования.
Когда ключи сгенерированы, можно приступить к вычислению электронной подписи.
2. Вычисление электронной подписи
3. Проверка электронной подписи
RSA, как известно, собирается уходить на пенсию, потому что вычислительные мощности растут не по дням, а по часам. Недалек тот день, когда 1024-битный ключ RSA можно будет подобрать за считаные минуты. Впрочем, о квантовых компьютерах мы поговорим в следующий раз.
В общем, не стоит полагаться на стойкость этой схемы подписи RSA, особенно с такими «криптостойкими» ключами, как в нашем примере.
Источник